Exploring the possibilities of two-dimensional transition metal carbides as anode materials for sodium batteries.

نویسندگان

  • Eunjeong Yang
  • Hyunjun Ji
  • Jaehoon Kim
  • Heejin Kim
  • Yousung Jung
چکیده

Recently a group of two-dimensional materials called MXenes have been discovered and they have demonstrated their potential in Li rechargeable batteries. Herein, the Na storage and ion migration properties of M2C-type MXenes (M = Ti, V, Cr, Mn, Fe, Co, Ni, Nb, Mo) were investigated using density functional theory (DFT) calculations, and were compared to the Li case. Based on the average voltage and migration barrier of surface ions, we suggest that M = Ti, V, Cr, Mn, and Mo are suitable for sodium ion battery (SIB) anodes. These screened M2C materials can provide a theoretical capacity of 190-288 mA h g(-1) by accommodating two alkali ions per formula unit. They also exhibit an activation barrier of 0.1-0.2 eV for ionic motion, suggesting that the M2C materials are promising for high-power applications. The underlying aspects of the voltage differences between M2C materials are also discussed using electrostatic considerations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Initial Discharge Capacity of Manganese Cobaltite as Anode Material for Lithium Ion Batteries

Nanostructured manganese cobalt oxide spinel (MnCo2O4) are prepared by co-precipitation method and calcined at 650 and 750°C. Morphological studies show that by increasing the calcination temperature from 650 to 750°C, morphology of the particles changes from quasi-plate to polyhedral. The MnCo2O4 calcined at 650°C could deliver an initial discharge capacity of 1438 mAh g-1 under current densit...

متن کامل

Dirac points with giant spin-orbit splitting in the electronic structure of two-dimensional transition-metal carbides

Dirac points with giant spin-orbit splitting in the electronic structure of two-dimensional transition-metal carbides, 2015, Physical Review B. Two-dimensional (2D) materials, especially their most prominent member, graphene, have greatly influenced many scientific areas. Moreover, they have become a base for investigating the relativistic properties of condensed matter within the emerging fiel...

متن کامل

Transition Metal Carbides and Nitrides in Energy Storage and Conversion

High-performance electrode materials are the key to advances in the areas of energy conversion and storage (e.g., fuel cells and batteries). In this Review, recent progress in the synthesis and electrochemical application of transition metal carbides (TMCs) and nitrides (TMNs) for energy storage and conversion is summarized. Their electrochemical properties in Li-ion and Na-ion batteries as wel...

متن کامل

Free-standing hierarchically sandwich-type tungsten disulfide nanotubes/graphene anode for lithium-ion batteries.

Transition metal dichalcogenides (TMD), analogue of graphene, could form various dimensionalities. Similar to carbon, one-dimensional (1D) nanotube of TMD materials has wide application in hydrogen storage, Li-ion batteries, and supercapacitors due to their unique structure and properties. Here we demonstrate the feasibility of tungsten disulfide nanotubes (WS2-NTs)/graphene (GS) sandwich-type ...

متن کامل

Effect of Different Binders on the Electrochemical Performance of Metal Oxide Anode for Lithium-Ion Batteries

When testing the electrochemical performance of metal oxide anode for lithium-ion batteries (LIBs), binder played important role on the electrochemical performance. Which binder was more suitable for preparing transition metal oxides anodes of LIBs has not been systematically researched. Herein, five different binders such as polyvinylidene fluoride (PVDF) HSV900, PVDF 301F, PVDF Solvay5130, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 7  شماره 

صفحات  -

تاریخ انتشار 2015